Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Метод итераций. Рассмотрим систему нелинейных уравнений специального вида
Рассмотрим систему нелинейных уравнений специального вида
, (4.1)
где . Решение системы (4.1) будем искать как предел последовательности , где .
Теорема 4.1. Пусть функции действительны, определены и непрерывны вместе со своими частными производными первого порядка в некоторой замкнутой ограниченной области , причем
· для всех выполняется ;
· .
Тогда последовательность сходится при любом выборе начального приближения , и предельный вектор является в области единственным решением системы (4.1). Кроме того, имеет место неравенство
. (4.2)
Как было сказано в главе 3, лабораторная работа по теме «Численные методы решения нелинейных уравнений и систем» состоит из двух частей. Во второй части работы требуется найти приближенное решение системы с заданной точностью.
Пример. Найти приближенное решение системы

в квадрате с точностью .
Решение. Перепишем систему в виде:

Пусть . Введем функции
.
Запишем матрицу Якоби этой системы функций:
.
Тогда

Так как при любом имеем , то в квадрате существует единственное решение данной системы. При этом
, где .
Положим , тогда и . Следовательно, последнее неравенство для определения количества итераций запишется в виде:
.
Решая данное неравенство, получаем . Итак, является приближенным решением системы, удовлетворяющим заданной точности. В листинге 4.1 приведен документ MathCad, в котором реализован метод итераций.

Листинг 4.1. Метод итераций
|