Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод дихотомии






В данном разделе мы рассмотрим метод дихотомии (половинного деления) уточнения корня уравнения (3.1). Пусть дано уравнение (3.1), где функция непрерывна на отрезке и . Для нахождения коря уравнения (3.1), принадлежащего отрезку , делим этот отрезок пополам. Если , то является корнем уравнения (3.1). Если , то выбираем ту из половин , на концах которой функция имеет противоположные знаки. Новый суженный отрезок снова делим пополам и проводим то же рассмотрение и т.д. В результате получаем на некотором этапе либо точный корень уравнения (3.1) или же бесконечную последовательность вложенных друг в друга отрезков

таких, что

. (3.2)

Так как левые концы образуют монотонную неубывающую ограниченную последовательность, а правые концы - монотонную невозрастающую ограниченную последовательность, то существуют пределы

.

В силу (3.2), и следующего неравенства:

,

мы получаем . Итак, . Переходя к пределу в неравенстве (3.2) и, учитывая непрерывность функции , получаем

.

Таким образом, число является корнем уравнения (3.1), причем, очевидно,

.

Полученное неравенство можно использовать для оценки погрешности найденного приближения. Так, если требуется найти решение уравнения с точностью , то процесс деления отрезка заканчиваем, когда выполняется неравенство . В качестве приближенного значения корня можно взять .

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.