Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Интегрирование иррациональных и трансцендентных функций.
Предварительно введем понятие рациональной функции от двух переменных u и v, то есть функции получающейся из этих переменных и некоторых постоянных, над которыми производятся только операции сложения, вычитания, умножения и деления R (u, v). Такова, например, функция

Если переменные u и v, в свою очередь являются функциями переменной x: то функция называется рациональной функцией от и 
Рассмотрим теперь интегралы от некоторых простейших иррациональных и трансцендентных функций сводящихся к интегралам от рациональных функций.
1. Интегралы вида где a, b, c, d – некоторые числа m – натуральное число. Интегралы данного вида рационализируются подстановкой 
2. Интеграл вида где a, b, c – некоторые числа Данный интеграл зависит от корней квадратного трехчлена Если этот трехчлен имеет два различных действительных корня x 1 и x 2, то он сводится к интегралу вида 1, а именно к интегралу

Если x 1= x 2, то интеграл сводится к интегралу от рациональной функции, а именно к интегралу

Если же квадратный трехчлен не имеет вещественных корней, то с помощью подстановки Эйлера

данный интеграл приводится к интегралу от рациональной функции

3. Интеграл вида рационализируется подстановкой Действительно,

4. Интеграл вида рационализируется подстановкой Действительно,

Практическое занятие 10
|