Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Ортогональный линейный оператор






 

Если , то будем говорить, что линейный оператор сохраняет скалярное произведение векторов а и b, а если , то будем говорить, что линейный оператор сохраняет скалярный квадрат вектора а. Линейный оператор называется ортогональным, если сохраняет скалярный квадрат любого вектора из евклидова пространства.

 

Теорема. Линейный оператор ортогонален тогда и только тогда, когда сохраняет скалярное произведение для любой пары векторов евклидова пространства.

Доказательство. Дано: . Тогда

.

С другой стороны,

 

Теорема. Матрица ортогонального линейного оператора в ортонормированном базисе ортогональна.

Доказательство. Пусть – ортонормированный базис Е. Каждый элемент можно записать в виде линейной комбинации векторов базиса

С одной стороны в силу того, что линейный оператор ортогональный и базис ортонормированный. С другой стороны, если это же скалярное произведение запишем в координатной форме, то получим , а это означает, что матрица ортогональна. ■

 

Теорема. Если матрица линейного оператора в некотором ортонормированном базисе ортогональна, то линейный оператор ортогонален.

Доказательство. Дано:

На базисных векторах линейный оператор ведет себя как ортогональный. Следовательно, ( для любых векторов а и b из Е. Это означает, что – ортогональный линейный оператор. ■

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.