Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Доказательство. Умножая обе части матричного равенства на матрицу ХТ слева, в правой части получим f






    АХ = .

    Умножая обе части матричного равенства на матрицу ХТ слева, в правой части получим f.

     

    Формулы называются линейным преобразованием неизвестных с матрицей . Обозначая через Х столбец из неизвестных , а через Y – столбец из неизвестных , запишем линейное преобразование в виде матричного равенства

    X = QY.

    Последовательное выполнение линейных преобразований с матрицами Q и R есть линейное преобразование неизвестных с матрицей QR, Если матрица линейного преобразования неизвестных невырожденная, то линейное преобразование называется невырожденным. Для невырожденной матрицы существует обратная, поэтому невырожденное линейное преобразование обратимо: Y = Q-1X.

    Так как произведение невырожденных матриц – невырожденная матрица, то последовательное выполнение невырожденных линейных преобразований есть невырожденное линейное преобразование.

     

    Теорема. Если квадратичную форму подвергнуть линейномупреобразованию X = QY с матрицей Q, то матрица преобразованной квадратичной формы равна QTAQ.

    Доказательство. = .

     

    Следствие. Знак определителя матрицы квадратичной формы при невырожденном линейном преобразовании не меняется.

    Доказательство. В равенстве det QTAQ =det A det 2 Q по условию det 2 Q 0, а поэтому число положительное. Следовательно, числа det QTAQ и det A одного знака.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.