Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Доказательство. Умножая обе части матричного равенства на матрицу ХТ слева, в правой части получим f
АХ = . Умножая обе части матричного равенства на матрицу ХТ слева, в правой части получим f. ■
Формулы называются линейным преобразованием неизвестных с матрицей . Обозначая через Х столбец из неизвестных , а через Y – столбец из неизвестных , запишем линейное преобразование в виде матричного равенства X = QY. Последовательное выполнение линейных преобразований с матрицами Q и R есть линейное преобразование неизвестных с матрицей QR, Если матрица линейного преобразования неизвестных невырожденная, то линейное преобразование называется невырожденным. Для невырожденной матрицы существует обратная, поэтому невырожденное линейное преобразование обратимо: Y = Q-1X. Так как произведение невырожденных матриц – невырожденная матрица, то последовательное выполнение невырожденных линейных преобразований есть невырожденное линейное преобразование.
Теорема. Если квадратичную форму подвергнуть линейномупреобразованию X = QY с матрицей Q, то матрица преобразованной квадратичной формы равна QTAQ. Доказательство. = . ■
Следствие. Знак определителя матрицы квадратичной формы при невырожденном линейном преобразовании не меняется. Доказательство. В равенстве det QTAQ =det A det 2 Q по условию det 2 Q 0, а поэтому число положительное. Следовательно, числа det QTAQ и det A одного знака.
|