Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Свойства сопряжения
1) ;
2) 
3) ; ;
4) 
5) ;
6) если линейный оператор невырожден, то ;
7) для любого целого неотрицательного m.
В силу свойства один линейные операторы и сопряжены друг другу. Свойство 3 в комплексном евклидовом пространстве приобретает вид .
Теорема. Если А – матрица линейного оператора в некотором ортонормированном базисе, то – матрица линейного оператора в этом же базисе.
Доказательство. Пусть Тогда . С другой стороны . Отсюда, aij = bji для всех i, j;
1 i, j n. ■
Если = , то линейный оператор называется самосопряженным.
Теорема. Матрица самосопряженного линейного оператора в ортонормированном базисе симметрична.
Доказательство. = . ■
Теорема. Если матрица линейного оператора в некотором ортонормированном базисе симметрична, то линейный оператор самосопряженный.
Доказательство. Дано:

На базисных векторах линейный оператор ведет себя как самосопряженный. Пусть 
С другой стороны . Правые части равны, поэтому равны и левые части, следовательно, ( для любых векторов а и b из Е. Это означает, что – самосопряженный линейный оператор. ■
Теорема. Собственные векторы самосопряженного линейного оператора, принадлежащие различным собственным значениям, ортогональны.
Доказательство. Пусть . Тогда

Правые части этих равенств равны, так как линейный оператор самосопряжен, поэтому равны и левые, т.е. ввиду того, что ■
Теорема. Корни характеристического многочлена симметрической матрицы с действительными коэффициентами действительны.
Доказательство. Пусть – корень характеристического многочлена матрицы А с действительными коэффициентами. Тогда существует ненулевое решение однородной системы линейных уравнений с матрицей , т.е. имеем систему равенств
,
где . После умножения каждого из этих равенств соответственно на получим или после суммирования всех равенств . В этом равенстве перейдем к сопряженным величинам . В силу симметричности матрицы А левые части двух последних равенств равны, поэтому равны и правые части, поэтому . ■
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Теорема. Для любой симметрической матрицы A с действительными элементами найдется ортогональная матрица Q, для которой матрица Q -1 AQ диагональная.
Доказательство проведем методом полной математической индукции по порядку n матрицы А. Матрицу А рассматриваем как матрицу линейного оператора в некотором ортонормированном базисе n- мерного евклидового пространств. Пусть с 1 – собственный вектор линейного оператора , принадлежащий собственному значению . Он существует, так как все характеристические корни матрицы А действительны. Считаем, что вектор с 1 нормирован и включим его в ортонормированный базис с 1, с 2, …, сn евклидова пространства. Подпространство, натянутое на векторы с 2, …, сn, инвариантно относительно и по гипотезе индукции в нем существует базис, в котором матрица линейного оператора, индуцированного линейным оператором , диагональна. Тогда матрица линейного оператора в базисе с 1, с 2, …, сn диагональна. Матрица Q перехода от первоначального базиса к базису с 1, с 2, …, сn искомая. ■
|