Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Упражнения. 1) Докажите, что ортогональные матрицы одного порядка образуют мультипликативную группу.






     

    1) Докажите, что ортогональные матрицы одного порядка образуют мультипликативную группу.

    2) Пусть А – комплексная матрица. Матрица строения называется сопряженной по отношению к матрице А, если для всех i, j . Докажите свойства:

    а) ;

    б)

    в) ; ;

    г)

    д) ;

    е) если линейный оператор невырожден, то ;

    ё) для любого целого неотрицательного m.

    ж) для любого целого m, если матрица А невырожденная;

    з) если f(t) = произвольный многочлен, то , где (х) = .

    3) Матрица А называется нормальной, если Докажите, что в нормальной матрице скалярное произведение строк i и j равно скалярному произведению столбцов i и j.

    4) Докажите, что в ортонормированном базисе унитарного пространства матрица нормального оператора нормальна. Обратно, нормальная матрица задает в ортонормированном базисе нормальный оператор.

    5) Проверьте, что матрицы нормальные и для каждой найдите ортонормированный базис из собственных векторов

    а) ; б) ; в) ; г) .

    6) Матрица U называется унитарной, если Докажите, что матрица унитарна тогда и только тогда, когда все ее собственные значения по модулю равны единице.

    7) Докажите, что унитарные матрицы одного порядка образуют мультипликативную группу.

     

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.