![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Средняя квадратическая ошибка функции
Пусть дана функция
где величины Средняя квадратическая ошибка функции (2.1) вычисляется по формуле:
Если величины
где Предрасчёт ожидаемой средней квадратической ошибки функции по формулам и называют решением прямой задачи теории ошибок. Задача 2.1. В треугольнике измерены два угла, известны их средние квадратические ошибки Решение. Составляем функцию
Тогда по формуле имеем:
Задача 2.2. Определить среднюю квадратическую ошибку превышения, вычисленного по формуле Решение. Находим Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
где
Тогда
Известно, что величина mh должна быть получена с двумя (или тремя, если число начинается с единицы) значащими цифрами. Чтобы это требование обеспечить, необходимо в промежуточных вычислениях по формуле удерживать в числах на одну значащую цифру больше, т.е. оставлять три (или четыре) значащие цифры, а сами числа следует представлять в стандартной форме. Например, число 0, 043662 необходимо записать так: С учётом сказанного выше находим: По результатам вычислений видно, что влияние линейных и угловых ошибок измерений в данной задаче примерно одинаково. Окончательно получаем:
Ответ: При решении обратной задачи теории ошибок — расчёте точности измерений аргументов по заданной средней квадратической ошибке функции — применяют так называемый принцип равных влияний, требование которого состоит в том, чтобы влияние каждого источника ошибок на общую ошибку функции было одинаковым. Так из формулы следует:
Все Задачи для контроля. Найти средние квадратические ошибки следующих функций независимо измеренных величин:
|