Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Критерии точности измерений
Основным критерием точности результатов измерений является средняя квадратическая ошибка — оценка среднего квадратического отклонения, определяемая по формуле
.
|
| Для ряда истинных ошибок при известном формула принимает вид (1.3) и называется формулой Гаусса:
,
|
| где ; .
Средней ошибкой называют оценку среднего отклонения n1 (центрального абсолютного момента первого порядка) и вычисляют по формуле:
.
|
| Вероятной ошибкой называют оценку вероятного отклонения r. -это такое значение случайной ошибки D, больше или меньше которого, по абсолютной величине, ошибки равновозможны, т.е.
.
На практике определяется величиной, которую находят, расположив все ошибки D i в ряд в порядке возрастания их абсолютных величин. Вероятная ошибка будет расположена в середине такого ряда.
При нормальном законе распределения случайных ошибок имеют место соотношения:
;
|
|
Соотношения называют критериями нормального закона (в разделе I, п. 3.5 они представлены в виде ; ).
Предельной ошибкой называют такую ошибку, больше которой в ряде измерений ошибок не должно быть. В качестве предельных выбирают величины, определяемые по правилу
и 
(с вероятностями 0, 954 и 0, 997 соответственно).
Перечисленные выше критерии , m, , , называют абсолютными ошибками.
Относительной ошибкой называют отношение соответствующей абсолютной ошибки к значению измеряемой величины X (если X неизвестно, его заменяют результатом измерения x).
Относительную ошибку обычно выражают в виде дроби с числителем, равным 1, например:
— средняя квадратическая относительная ошибка;
— предельная относительная ошибка величины X.
Значения абсолютных ошибок получают с двумя–тремя значащими цифрами, а знаменатель относительной ошибки округляют до двух значащих цифр с нулями.
Например, при и .
.
|