Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Классификация ошибок измерений






 

Ошибки измерений подразделяют на грубые, систематические и случайные.

К грубым ошибкам относят ошибки, вызванные промахами и просчётами наблюдателя, неисправностями приборов, резким ухудшением внешних условий и др. С целью их обнаружения измерения выполняются многократно (не менее двух раз). Результаты измерений, содержащие грубые ошибки, необходимо выявлять и исключать из обработки.

К систематическим относят ошибки, которые входят в результаты измерений по тому или иному закону, как функции источников возникновения ошибок. В практике геодезических измерений применяют следующие способы уменьшения влияния систематических ошибок:

1. Устанавливают закон появления систематических ошибок, после чего ошибки уменьшают введением поправок в результаты измерений;

2. Применяют соответствующую методику измерений для того, чтобы систематические ошибки действовали не односторонне, а изменяли знаки;

3. Используют определённую методику обработки результатов измерений.

Случайные ошибки являются наиболее ярким примером случайной величины. Их закономерности обнаруживаются только в массовом проявлении. Случайные ошибки неизбежны при измерениях и не могут быть исключены из единичного измерения. Влияние их можно лишь ослабить, повышая качество и количество измерений, а также надлежащей математической обработкой результатов измерений. Причин возникновения случайных ошибок измерений много: влияние внешних условий, неточности изготовления и юстировки приборов, неточности выполнения операций наблюдателем и т.д. Очевидно, что случайные ошибки являются результатом суммирования большого числа независимых элементарных ошибок. На основании центральной предельной теоремы Ляпунова можно считать, что случайные ошибки измерений подчиняются нормальному закону распределения.

В дальнейшем условно примем, что в любых измерениях грубые ошибки отсутствуют, основная часть систематических ошибок исключена из результатов, а остаточные систематические ошибки ничтожно малы, т.е. будем рассматривать только случайные ошибки (, где хi — результат измерений, Х — истинное значение измеряемой величины.) Очевидно, что , а .

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.