Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Единичная функция
(единичный сигнал включения)
Математически единичная или ступенчатая функция (см. рисунок 13, б) наиболее часто определяется следующим образом: 0 при t < t 0, 1(t – t 0) = ½ при t = t 0, 1 при t > t 0.
Встречается и такая запись единичной функции, когда ее значение в точке разрыва не определено: 0 при t < t 0, 1(t – t 0) = 1 при t > t 0. Единичная или ступенчатая функция служит удобной математической моделью для описания процессов коммутации в цепях, различных импульсных сигналов, например, достаточно часто с помощью ступенчатых функций синтезируются прямоугольные импульсные сигналы и т. д. Так, прямоугольный импульс высотой U, длительностью t и (рисунок 19), симметрично расположенный относительно начала координат (t = 0), может быть записан так:
U (t) = U rect t / t и = U 1(t + t и/2) – U 1(t – t и/2). (40)
.
Эта сложность может быть преодолена, если единичную функцию 1(t) = σ (t) умножить на e -α t (α > 0), а затем в полученном результате принять α → 0. Тогда получим:
= ,
откуда при ω > 0, = = = (41) при ω < 0.
Однако этот результат не является полным, так как обратное преобразование Фурье от 1/ j ω не сходится к 1(t). Для преодоления этой трудности следует (рисунок 20) единичную функцию σ (t) разложить на четную σ ч(t) и нечетную σ нч(t). Затем, вводя для нечетной части e -α t , находим полное выражение спектральной функции σ (t) = 1(t):
= . (42)
Первое слагаемое представляет собой спектральную функцию σ ч(t) (постоянную составляющую), а второе – спектральную функцию σ нч(t). Если в цепи не проходит постоянная составляющая, то первое слагаемое опускается и принимается , т. е. используется результат выражения (41). Модуль и аргумент функции представлены графически на рисунке 21.
|