Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Преобразование кривой регрессии в прямую линию
Если из теоретических соображений или на основе графического анализа можно предположить, что опытные данные описываются степенной функцией типа: ; (12.29) или показательной функцией: ; (12.30) или иной другой, которая может быть преобразована к линейному виду относительно переменных, то регрессионный анализ осуществляют по отношению к преобразованным переменным. Выражения преобразуют к линейному виду путем логарифмирования. В результате получают соответственно: ; (12.31) и ; (12.32) Однако использование метода наименьших квадратов применительно к преобразованным переменным позволяет минимизировать сумму квадратов отклонений w, равную ; (12.33) а не исходных значений у. В случае, когда вид функции, связывающей переменные х и у, точно известен, рекомендуется для получения уточненных оценок параметров в уравнении регрессии делать их оценку с помощью корректированной суммы квадратов отклонений ; (12.34) где - производная функции w по у, взятая в точке у = уi. Дифференцируя по и и приравнивая обе производные нулю, получим после преобразования ; и ; (12.35) Аналогично имеем и ; (12.36) Решая системы уравнений относительно и , найдем соответствующие оценки.
|