Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Выбор аппроксимирующего распределения.
Часто исследователь не имеет возможности вследствие недостаточной изученности явления сделать выбор статистической модели для описания результатов наблюдений на основе теоретических соображений. В этом случае он осуществляет выбор аппроксимирующего распределения эмпирическим путем с последующей проверкой адекватности выбранной модели реальному явлению. Эмпирическими распределениями широко пользуются при моделировании функционирования различного рода сложных систем методом Монте-Карло, а также при прогнозировании возможных исходов в последующих опытах на основе имеющейся информации. Существует несколько методов аппроксимации эмпирических распределений. Метод выбора и оценки параметров аппроксимирующего распределения Пирсона. Для выбора вида аппроксимирующей функции Пирсон предложил использовать график, на котором по оси абсцисс отложено значение квадрата коэффициента асимметрии , а по оси ординат - значение коэффициента эксцесса . На рисунке показано, как размещаются в указанной системе координат распределения: нормальное, равномерное, экспоненциальное (представленные точками, так как они не имеют параметра формы), логарифмически нормальное, гамма-распределение, бета-распределение Стьюдента (представленные кривыми, поскольку у них имеется один параметр формы), бета-распределение (имеющее два параметра формы и занимающее определенную область). Для выбора графика аппроксимирующей функции распределения необходимо знать значения и , которые, как правило, не известны и заменяются оценками , и , полученными на основе экспериментальных данных.
Рис.11.1- Области, соответствующие различным распределениям в системе координат и области, соответствующие различным распределениям Пирсона в системе координат и где : 1 - равномерное распределение; 2 - нормальное распределение: 3 - экспоненциальное распределение; 4- гамма-распределение: 5 - логарифмически нормальное распределение; 6 - t-распределение: U-образное бета-распределение: J-образное бета-распределение; B-бета-распределение
Необходимые для получения оценок , и центральные моменты рассчитывают по формулам: , (11.1); , (11.2); , (11.3) откуда: , (11.4); , (11.5) Значения случайных величин , и очень чувствительны к отклонению отдельных крайних точек случайной величины х от ее среднего. Поэтому при малых выборках (объемом меньше 200 единиц) использование этих оценок требует большой осторожности. Пирсон предложил семь типов распределений, позволяющих описывать большую область изменений , и , чем это удается сделать с помощью описанных выше распределений. Плотность вероятности f(x) в этих распределениях является решением дифференциального уравнения ; (11.6) где началом отсчета для х служит среднее значение. Вид решения зависит от постоянных величин c0, с1 и c2, которые связаны простыми соотношениями с моментами соответствующего распределения вероятностей: ; ; ; (11.7) В качестве частных решений уравнения получаются рассмотренные выше нормальное распределение бета-распределение (распределение Пирсона типа I) и гамма-распределение (распределение Пирсона типа III). Распределения Пирсона типа II симметричны относительно центральной ординаты и имеют конечный размах, типа IV асимметричны с неограниченным в обоих направлениях размахом, типа V асимметричны с ограниченным с одной стороны размахом (0< = х < ), типа VI асимметричны с ограниченным с левой стороны размахом (a < х < ), типа VII симметричны относительно оси ординат с неограниченным размахом в обе стороны. Частным случаем этого типа распределения является нормальное распределение. Область точек (, ) которым соответствуют определенные кривые распределений, ограничена сверху и снизу прямыми, описываемыми соответственно уравнениями: и (11.8) Более подробно с распределениями Пирсона и методами подбора аппроксимирующих кривых можно познакомиться в литературе.
|