Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Оценка параметров нормального распределения по экспериментальным данным
Оценку математического ожидания vx вычисляют по формуле vx = (10.7) где хi - значение i-того результата определения х; n - число испытаний. Здесь и дальше знак _ над обозначением того или иного параметра означает, что мы имеем дело с оценкой этого параметра. Для дисперсии, существуют две оценки: (10.8) (10.9) Первая оценка, являющаяся оценкой максимального правдоподобия, имеет смещение, а вторая оценка смещения не имеет, и по этой причине ею пользуются чаще. При больших значениях различие в величине этих оценок стремится к нулю. Следует отметить, что среднее квадратическое отклонение s не являете несмещенной оценкой. Таким образом, эмпирическое среднее х стремится по вероятности к центру распределения vx при n и может использоваться как оценка этого параметра.
Контрольные вопросы: 1. Законы распределения параметров: непрерывные и дискретные распределения. 2. Закон нормального распределения, другие виды распределений случайной величины и применение. 3. Оценка параметров нормального распределения: математическое ожидание, дисперсия.
|