Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Определение
Операцией обратной связи называется преобразование конечного автомата Â, при котором один из выходов Â подключается к входу автомата Z, а выход Z подсоединяется к одному из входов Â.
В результате операции обратной связи образуется новый автомат с m - 1 входами и n - 1 выходами. Пример. На рис. 7.14 изображен конечный автомат Á, который получается из автомата Â, имеющего по два входа и выхода, применением обратной связи: x (t) y (t) Â Z Á Рис. 7.14 Состояниями Á являются пары (q i, q j), где q i - состояние Â, а q j - состояние автомата задержки Z. Пусть q 0- начальное состояние автомата Á. Тогда функционирование автомата Â для заданных начальных состояний q 0 и a 0 представляется следующими каноническими уравнениями:
Здесь q 1(t) и q 2(t) - состояния Â и Z в момент t, а y1 и y2 - функции, определяющие символы на первом и втором выходах автомата Â соответственно. Входные символы для автомата Â представляют собой пары символов (x 1(t), x 2(t)). Упражнение. Записать канонические уравнения для автомата задержки на два шага, изображенного на рис. 7.15. Z Z
Рис. 7.15
|