Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! ОПРЕДЕЛЕНИЕ. Множество U A*распознается автоматом Â из начального состояния q0и множества D Q- распознающих состояний
Множество U A *распознается автоматом Â из начального состояния q 0и множества D Q - распознающих состояний, если " Î A *( Î U Â распознает ).
Например. Если A = { o, s }, то множество слов в этом алфавите, имеющих вид: 1 sos 2, где 1 и 2 - это произвольные слова из A *, распознается автоматом, изображенным на рис. 7.10. В приведенной на этом рисунке диаграмме не отображены сведения о значениях вункции выхода автомата, поскольку они не влияют на процесс распознавания о q 0 s o s, o s q 1 q 3
o q 2 s
Рис. 7.10 Здесь q 0 - начальное состояние автомата, а { q 3} - множество распознающих состояний. Состояние q 0 соответствует ситуации, когда поступившая на вход автомата часть перерабатываемого слова не заканчивается никаким началом слова вида sos 2. Тогда состояние q 1 соответствует ситуации, когда последний поступивший на вход символ может быть первым в слове sos, q 2 соответствует случаю, когда два последних символа это so. Наконец, q 3 соответствует случаю, когда на входе автомата уже появились последовательно все символы слова sos. Заметим, что для распознавания слов конечными автоматами значения символов на выходе автомата несущественны. Поэтому в диаграмме из приведенного примера дуги не размечены значениями выходных символов. В дальнейшем автомат Â = (A, B, Q, j, y), который распознает множество слов U из начального состояния q 0 для множества распознающих состояний D, будем записывать как Â = (A, Q, j, q 0, D). Если некоторое множество U A *распознается некоторым конечным автоматом, то U называется автоматным языком.
|