Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! ОПРЕДЕЛЕНИЕ. Состояния qi и qj автомата Áназываются отличимыми, если существует такое входное слово , что
Состояния q i и q j автомата Á называются отличимыми, если существует такое входное слово , что () ().
Отличимость двух состояний q i и q j означает, что существует входное слово , которое из этих состояний как начальных перерабатывается в разные выходные слова.
В качестве примера рассмотрим автомат, изображенный на рис. 7.6.
0 (0) 0 (0) q0 q 1
0 (1) 1 (1) 1 (1)
1 (0) q2 Рис. 7.6
Состояния q 0 и q 1 заданного автомата неотличимые. Это так поскольку первый символ произвольного входного слова из состояний q 0 и q 1 как начальных перерабатывается одинаково. При этом автоматв обоих случаях переходит в одно и то же состояние. Поэтому дальнейшая переработка слова из начальных состояний q 0и q 1 продолжается одинаково. Состояния q 0 и q 2 рассматриваемого автомата являются отличимыми так как, например, (0) (0).
Если состояния q i и q j автомата - являются отличимыми, то функции () и () различаются на бесконечном множестве слов. Действительно, если для некоторого имеет место соотношение () ¹ (), то для любого слова также справедливо ( ) |¹ ( ).
Функции, вычисляемые автоматами, имеют бесконечные области определения. Поэтому невозможна конструктивная проверка отличимости состояний на основе только определения отличимости. С целью отыскания метода для распознавания отличимых состояний произвольных автоматов рассмотрим вопрос о длине кратчайшего слова, которое по-разному перерабатывается из двух отличимых состояний q i и q j. Прежде всего отметим, что длина кратчайшего слова может быть сколь угодно большой.
Пусть Á - это автомат с n состояниями, диаграмма переходов которого приведена на рис. 7.7.
0 (0) 0 (0) 0 (0) 0 (0) q1q 2 .... q n 1 (1) 1 (1) 1 (1)
1 (0)
Рис 7.7 Состояния q 1 и q 2 этого автомата являются отличимыми, и длина кратчайшего слова, на котором они различаются, равна n - 1. Действительно, для любого входного слова первые n - 1 символов этого слова одинаково перерабатываются автоматом из состояний q 1 и q 2. После этого Á переходит в состояние q n, если он начал работу из состояния q 2, и в состояние q n- 1, если Á начинает работу из состояния q 1. Из q n- 1 и q n как начальных состояний всякое односимвольное слово перерабатывается по-разному. Поэтому n -й символ любого входного слова перерабатывается из состояний q 0и q 1 в разные выходные слова.
Покажем, что если состояния q i и q j автомата Á, имеющего n состояний, отличимые, и - это кратчайшее слово, для которого () (), то | | n - 1.
|