Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Решение. Задача может быть решена как с помощью интегрального преобразования Фурье, т.е






    Задача может быть решена как с помощью интегрального преобразования Фурье, т.е. с использованием понятий спектральной плотности стационарного процесса SXX (w) и передаточной функции линейной системы H (j w), так и с помощью двустороннего преобразования Лапласа, т.е. с применением SXX (p) и Н (p).

    Спектральная плотность стационарного эргодического случайного процесса X (t) связана с корреляционной функцией этого процесса с помощью соотношений Винера-Хопфа, полученных на основе двойного интеграла Фурье:

     

    SXX (w) =

     

     

    При использовании двустороннего интегрального преобразования Лапласа приведенные соотношения принимают вид:

     

    SXX (p) = (2.1)

     

    (2.2)

     

    Корреляционная функция KXX(t) при использовании последнего выражения может быть определена с помощью теории вычетов:

     

    KXX (t) = при > 0, (2.3)

    KXX (t) = при t< 0, (2.4)

    где

    l к и m к - левые и правые полюса SXX (p), соответственно.

    Дисперсия процесса X (t) определяется по выражениям (2.2)…(2.4) при t=0: DX = KXX (0).

    В рассматриваемом примере

    SXX (w) = DX + DX = (2.5)

     

    SXX (p) = DX + DX (2.6)

    Следует отметить, что выражение (2.5) может быть получено из выражения (2.6), если в последнем положить p = j w.

    Передаточную функцию схемы рис.2.1 получим, используя одностороннее интегральное преобразование Лапласа и полагая, что случайный процесс X (t) представляет собой напряжение на входе схемы. Тогда

    H (p)= Y (p)/ X (p)= I (p) R 2, (2.7)

    где I (p)= X (p)/(R 2+ R 1+ pL) – операторное изображение тока. (2.8)

    Подставляя (2.8) в (2.7), получим

     

    H (p)= R 2/(R 1+ pL)=d2/(p +d), (2.9)

    где d2= R 2/ L, d=(R 1+ R 2 )/L – декремент контура (d=1/ T, T – постоянная времени контура.

    Спектральная плотность случайного процесса на выходе схемы определится как

    SYY (p)= SXX (pH (pH (- p) = (2.10)

    или

    SYY (w)= SXX (w)× × H (j w) H (- j w) = (2.11)

     

    Для определения корреляционной функции случайного процесса Y (t) воспользуемся выражениями (2.3), (2.4) и (2.10). Спектральная плотность SYY(p) имеет два левых полюса p 1=-a и p 2=-d и два правых полюса p1=a и p 2=d. Беря с помощью второй теоремы разложения Хевисайда оригиналы изображений (2.3) и (2.4) , получим

     

    KYY (t) = при t> 0, (2.12)

     

    KYY (t) = при t < 0. (2.13)

     

    Объединяя выражения (2.12) и (2.13), получим:

     

    KYY (t) = при . (2.14)

     

    Дисперсия стационарного процесса на выходе схемы рис.1 определится как

     

    DY = KYY (0) = DX (2.15)

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.