Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Определение 4.10.






    Пусть – функция распределения, - квантиль (квантиль уровня ) функции распределения есть число такое, что:

    .

    (если существует несколько значений , удовлетворяющих условию , то в качестве -квантили принимают наименьшее из этих значений).

    Если распределение, соответствующее имеет название, то обычно говорят, например, «квантиль уровня нормального распределения с параметрами 0 и 1» или «квантиль уровня распределения хи-квадрат с степенями свободы».

    Предположим, что функция распределения зависит от неизвестного параметра , тогда -квантиль является функцией параметра и является неизвестной величиной. Для построения оценки -квантили функцию распределения заменяют эмпирической функцией распределения .

     

    Теорема 4.12. (Крамер)

    Пусть – выборка из распределения , -квантиль распределения и в некоторой окрестности точки плотность вероятности непрерывно дифференцируема и положительна, , тогда статистика имеет асимптотически нормальное распределение:

    , при .






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.