Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Определение 5.4.
Пусть – наблюдение и случайная величина зависит как от наблюдения так и от неизвестной величины . Случайная величина называется центральной статистикой для величины , если:
1) функция распределения известна (то есть никаким образом не зависит от неизвестного параметра ),
2) при всех реализациях наблюдения одновременно функция непрерывна и строго монотонна по (например, при всех функция непрерывна и возрастает по ).
Предположим, что некоторым образом построена центральная статистика для – , поскольку функция распределения известна (условие 1), то всегда можно найти числа и такие, что:
.
Поскольку функция непрерывна по при всех реализациях наблюдения , то при каждом существуют решения и системы уравнений (рисунок 5.1):

Рисунок 5.1.
Если функция возрастает по при всех реализациях наблюдения, тогда события и эквивалентны и вероятности событий равны, то есть:
.
Пусть статистики и , тогда интервал является доверительным интервалом для с уровнем доверия , поскольку для всех допустимых значений параметра :
,
следовательно,
.
Если функция убывает по при всех реализациях наблюдения, тогда эквивалентны события и и равны вероятности:
.
Пусть статистики и , тогда интервал является доверительным интервалом для с уровнем доверия , поскольку для всех допустимых значений параметра :
,
тогда,

Аналогичным образом, с помощью центральной статистики могут быть построены доверительные границы.
|