Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Утверждение 3.14.
Пусть – оптимальная оценка в классе несмещенных оценок (то есть – эффективная оценка ) и – статистика достаточная для параметра , тогда статистика является функцией : , где некоторая функция. Доказательство: Определим статистику следующим образом: , тогда по теореме 3.13 оценка является несмещенной: , и кроме того, . Оценка является оптимальной в классе несмещенных оценок , и следовательно среди всех несмещенных оценок имеет наименьшую дисперсию, поэтому для всякой несмещенной оценки, в том числе и для : Из двух неравенств следует, что . Таким образом, статистика также является оптимальной оценкой в классе несмещенных оценок , но несмещенная оптимальная оценка единственна (утверждение 1.12), отсюда статистики и совпадают: . Статистика является условным математическим ожиданием, и следовательно является функцией , поэтому: . Утверждение доказано.
|