Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Теорема об улучшении несмещенных оценок с помощью достаточных статистик (теорема Блекуэлла). Утверждение об оптимальной несмещенной оценке и достаточной статистике.
Теорема 3.13 (Блекуэлл) Пусть – несмещенная оценка , – статистика, достаточная для параметра и случайная величина является условным математическим ожиданием величины при условии : , тогда 1) случайная величина является статистикой; 2) ; 3) . Доказательство: 1) Заметим, что условная случайная величина:
где условное распределение случайного вектора при условии . Поскольку является статистикой достаточной для параметра , то по определению, условная плотность от параметра не зависит. Таким образом, справа в (3.6) под интегралом расположены функции, которые от параметра не зависят, и следовательно интеграл является функцией только , поэтому случайная величина , является статистикой, поскольку зависит только от наблюдения : . 2) Вычислим математическое ожидание , воспользовавшись свойством условного математического ожидания: , поскольку является несмещенной оценкой . 3) Представим дисперсию с помощью условного математического ожидания и условной дисперсии: . Во втором слагаемом справа , поэтому: , поскольку условная дисперсия неотрицательна случайная величина, , то и математическое ожидание от неотрицательной величины условной дисперсии неотрицательно, : . Теорема доказана.
|