Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Пример выполнения работы. Задача 6.1. Вычислить производную функции в точке с точностью .
Задача 6.1. Вычислить производную функции в точке с точностью . Решение: Положим , откуда: . Определим приближённое значение производной: Найдём отношения, аппроксимирующие производную: . Заметим, что . Таким образом, начиная с третьего приближения, в соответствии с оценкой (3), получаем искомое приближение производной данной функции с точностью не меньшей заданной. Точное значение . Задача 6.2. Вычислить по формуле левых прямоугольников интеграл , разбив отрезок интегрирования на 10 частей. Оценить ошибку вычислений и сравнить полученное значение с точным значением, вычисленным по формуле Ньютона-Лейбница. Решение. Вычислим значения подынтегральной функции в точках деления и соответствующие значения занесём в таблицу:
Воспользуемся формулой (1): . Оценим ошибку вычисления. Имеем: . Подставляя в формулу , где (наибольшее значение первой производной подынтегральной функции на отрезке интегрирования), получаем . Действительно, сравнивая полученное значение с точным значением, получаем . Это весьма значительная ошибка. ПРАКТИЧЕСКАЯ РАБОТА №7 ТЕМА: «МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ» Задание:
|