Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Пример выполнения работы. Задача 2.1. Методом половинного деления найти корень уравнения с точностью e=0,01.






    Задача 2.1. Методом половинного деления найти корень уравнения с точностью e=0, 01.

    Решение:

    Один из искомых корней принадлежит отрезку . На каждом шаге вычислений значение корня принимаем равным с погрешностью . Будем производить вычисления и выбирать последовательность вложенных отрезков , используя условие . Имеем

    Так как и , то принимаем:

    Тогда

    Здесь

    Следовательно,

    Тогда

    Производя вычисления, можно убедиться, что требуемая точность достигается на 7-м шаге: с погрешностью

    Задача 2.2. Решить уравнение методом итераций с точностью .

    Решение: Для отделения корней представим данное уравнение в виде . Построив графики функций и , увидим, что корень уравнения содержится внутри отрезка .

    Здесь

     

    Запишем уравнение в виде , где

    Положим . Последовательные приближения найдём по формулам

    .

    Для оценки погрешности четвёртого приближения воспользуемся неравенством . Так как , то . Следовательно, с точностью . Заметим, что мы получили приближённое значение корня с точностью более высокой, чем задано в условии.

    Задача 2.3. Один из корней уравнения заключён в отрезке . Найти приближённое значение этого корня методом касательных с помощью двух итераций и оценить погрешность вычисления.

     

    Решение. Здесь . Заметим, что на отрезке сохраняют знак и первая и вторая производные: . Таким образом, выполняются условия применения метода касательных. В качестве можно взять, например, , так как и . Тогда имеем . Оценим погрешность вычисления. Найдём значения необходимых параметров: .

    Тогда .

    Вторая итерация: .

    Оценим погрешность вычисления: .

    Таким образом, мы уже на второй итерации получили приближённое значение корня такой же точности, как в примере из предыдущей лекции лишь на седьмом шаге.

    ПРАКТИЧЕСКАЯ РАБОТА №3

    ТЕМА: «МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ»

    Задание:






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.