Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Вопрос 7






    Метод медленно меняющихся амплитуд (ММА) применим к системам с малыми нелинейностью и диссипацией и основан на известной теореме, что свойства системы и решение описывающего её ДУ изменяются непрерывно при изменении параметров этого уравнения. При малых нелинейностях и диссипации движение в системе будет близко к чисто гармоническому, соответствующему линейной консервативной системе, уравнение которой имеет вид

    .

    Введём безразмерное время t = w 0 t, тогда в этом масштабе времени уравнение будет таким

    .

    Для системы близкой к линейной консервативной уравнение выглядит так:

    , (3.7)

    где f - произвольная регулярная, в общем случае нелинейная функция координаты q и скорости её изменения, значения которой остаются малыми по сравнению со значениями членов, стоящих в левой части уравнения (3.7) (в силу слабой нелинейности параметров и малых потерь в системе).

    Выберем в уравнении (3.7) масштаб по координате q и перейдём к безразмерной переменной x так, чтобы при колебаниях изменение x было порядка единицы, тогда правая часть (3.7) должна быть много меньше единицы:

    ,   . (3.8)

    При m = 0 решением уравнения будут чисто гармонические колебания

    ,

    где a и b - постоянные, задаваемые начальными условиями.

    При 0 < | m | < 1 будем считать, что решение может быть записано в виде

    , (3.9)

    где u (t) и v (t) - медленно меняющиеся функции (в сравнении с cos(t)), так что

    , .

    Но получается, что одной функции x (t) ставятся в соответствие две функции u (t) и v (t), т. е. задача становится заведомо неоднозначной. Можно произвольно задать одну из функций и подобрать к ней вторую, при этом, если мы не угадаем, то эта функция будет быстро меняться. Потребуем, чтобы функция x (t) удовлетворяла условию:

    (3.10)

    для чего необходимо и достаточно, чтобы

    (3.11)

    При выполнении условия (3.11) уравнение-связь (3.9) становится однозначным, т. е. становится однозначной связь функций x (t), u (t) и v (t).

    Используя уравнения (3.9) - (3.11), преобразуем (3.8): продифференцируем (3.10) по времени и сложим с (3.9) с учётом (3.8):

    . (3.12)

    Умножим (3.12) на sin(t), а (3.11) на cos(t) и вычтем из первого второе; потом умножим (3.12) на cos(t), а (3.11) на sin(t) и сложим их, тогда получим систему:

    (3.13)

    Таким образом, мы получили систему двух уравнений первого порядка (3.13), которая, естественно, полностью эквивалентна одному уравнению второго порядка (3.8). Она не даёт никаких преимуществ в смысле упрощения задачи. Существенный в шаг в сторону нахождения приближенного решения можно сделать, если воспользоваться условием медленного изменения функций u и v за период. Заменим мгновенные значение u и v их средними значениями за каждый период колебаний, равный 2 p. Производя усреднение по периоду, мы приходим к системе так называемых укороченных уравнений

    ;   (3.14)

    Эта система уже не содержит в правой части в явном виде времени t, и во многих случаях её можно легко проинтегрировать, получая временной ход медленно меняющихся функций u (t) и v (t), являющихся амплитудами искомого решения.

    Систему уравнений (3.14) можно получить из системы (3.13), если правые

    части разложить в ряд Фурье как периодические функции с периодом 2 p и отбросить все осциллирующие члены (в системе (3.14) записаны только первые слагаемые ряда). В этом отбрасывании осциллирующих членов и заключается " укорочение", приводящее от системы уравнений, точно соответствующей исходному уравнению, к приближенным укороченным уравнениям.

    Переход от переменных x, к переменным u, v эквивалентен переходу от фазовых координат x, к вращающейся системе координат u, v. Это означает, что система координат u, v в координатной плоскости x, вращается с угловой частотой, равной единице.

    Рассмотрим теперь другой вариант метода ММА с переходом от исходных координат x, к радиальным координатам - амплитуде X и фазе q, которые также являются медленными переменными в масштабе времени t.

    Будем теперь искать решение исходного уравнения (3.8) в виде

    . (3.15)

    Введём замену переменной :

    , (3.16)

    для чего необходимо положить

    . (3.17)

    Дальше дифференцируем (3.16) по времени, с учётом равенства (3.17), и вместе с (3.15) подставляем в исходное уравнение (3.8), тем самым, выражая его через новые переменные X и q.

    (3.18)

    Из (3.17) и (3.18) находим точную систему дифференциальных уравнений, описывающих процессы в системе

    (3.19)

    Здесь X (t) и q (t) являются медленными функциями времени t, что позволяет усреднить правые части (3.19) за период, считая, что за это время X и q не меняются. Указанная процедура усреднения приводит к системе укороченных уравнений вида

    (3.20)

    Мы обозначили t 1 = t + q.

    Найдём спектр ММА колебания. Для этого запишем сигнал ММА (3.15) в реальном масштабе времени:

    .

    Предполагается, что соотношение (3.16) выполняется, а центральная частота w 0 выбирается так, чтобы амплитуда колебаний X (t) менялась как можно медленнее. Условие медленного изменения амплитуды принимает вид:

    ,   . (3.21)

    Спектр ММА процесса будет

    .

    Здесь мы обозначили спектр комплексной огибающей колебания :

    .

    У нас и X, и q меняются медленно, тогда комплексная огибающая меняется медленно по сравнению с характерным временем 1/ w 0. Это значит, что t > > 1/ w 0, где t - характерное время изменения комплексной огибающей.

    Рис. 25. Спектр сигнала. Можно определить ширину спектра D w из условия, что при | w - w 0| > D w спектр сигнала S (jw) º 0. В теории интегралов Фурье установлена связь между шириной полосы спектра и временем характерного изменения импульса: t D w ~ 1. Таким образом, любой узкополосный процесс, для которого

    D w < < w 0, является ММА процессом, но обратное не обязательно.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.