Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Генерация высших гармоник Вопрос 11






Явление, когда появляются высшие гармоники при гармоническом воздействии на нелинейную систему, называется генерацией гармоник.

Рассмотрим, например, колебания в нелинейной консервативной системе с конденсатором с сегнетоэлектриком при достаточно большой амплитуде гармонического воздействия, причём собственная частота малых свободных колебаний системы близка к утроенной частоте воздействия. Для конденсатора с сегнетоэлектриком

.

Уравнение (4.3) будет в этом случае иметь вид:

, где . (4.13)

При большой нелинейности нельзя предполагать, что решение близко к гармоническому. Можно ожидать появления высших гармоник. Мы допустили, что есть третья гармоника, т. е. если w 1 - частота внешнего воздействия, то w 1» w 0/3. В этом случае можно ограничиться только первой и третьей гармониками и искать вынужденные колебания в виде

,

тогда получается

.

Оставляя в разложении f (q) в ряд Фурье только члены с cos t и cos3 t и приближенно положив - f (q) = a 1cos t + a 3cos3 t, получим систему двух уравнений

;   . (4.14)

Для выбранного вида нелинейности имеем

(4.15)

Для свободных колебаний системы с нелинейностью (P = 0) из (4.14) получим уравнения

;   . (4.16)

Здесь w - основная частота свободных колебаний нелинейной системы, заменившая частоту w 1, которая задавалась внешним воздействием. Из последней системы можно найти соотношение между амплитудами гармоник

.

Нетрудно убедиться, что из системы (4.16) можно получить частоту свободных колебаний:

.

Как мы видим, w отличается от w 0 лишь на величину порядка e.

Иначе обстоит дело при наличии воздействия (P ¹ 0). Тогда частота возбуждаемого колебания будет задаваться внешним воздействием. В рассматриваемом случае частота w 0 близка к 3 w 1. В результате соотношение между амплитудами основного колебания и его третьей гармоники должно быть совсем иным.

Для определения a 1 и a 3 имеем систему (4.14). Заменяя из (4.16) в первом уравнении a 1 на w 2 a 1, получаем

,

откуда выражение для амплитуды основной гармоники

.

Здесь мы учли, что w» w 0 (с точностью до величины порядка e), а w 0» 3 w 1.

Рис. 31. Амплитуда третьей гармоники. Для определения a 3 воспользуемся вторым соотношением из (4.14), тогда, подставив его во второе уравнение системы (4.15), получим . Введём относительную расстройку x: , тогда получим уравнение третьей степени относительно a 3:

.

Так как e ¹ 0, то на e можно сократить

. (4.17)

Это решение описывает установившийся процесс. Таким образом, нелинейность зависит от отношения x / e. Зависимость амплитуды третьей гармоники от этого отношения представлена на рис. 31.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.