Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Линейный контур с затуханием






Рассматриваем RLC колебательный контур - простейшая система с затуханием. Мы зарядили конденсатор, и в момент времени t 0 замкнули ключ (рис. 22). Уравнение колебаний в такой системе: Рис. 22. Линейный контур с затуханием.
, где , . (3.2)
Точка равновесия x = 0 представляет собой устойчивый фокус. Найдём уравнение фазовых траекторий. Для этого преобразуем это уравнение стандартным образом: , .
     

Откуда просто получаем уравнение фазовых траекторий

. (3.3)

Это уравнение не очень удобно, так как в правой части зависит как от x, так и от y, поэтому введём новую переменную z = y / x, тогда (3.3) перепишем в виде

.

Выполним некоторые элементарные преобразования:

,

или, проинтегрировав,

;

мы обозначили . Запишем z через x и y, и возведём в exp:

. (3.4)

У нас получились уравнение фазовой траектории в явном виде. Придадим этому уравнению более удобную форму. Для этого введём ещё одни новые переменные u = y + dx, v = wx. Если w 0 > d (затухание мало), то w действительное число, тогда (3.4) принимает вид:

.

Перейдём к полярным координатам: v = r cos j, u = r sin j, тогда

. (3.5)

Интегральная кривая соответствующая этому случаю изображена на рис. 23.

Если затухание велико, т. е. w 0 < d, тогда w 2 отрицательное, и w - мнимое число (w = iq). Опять, путём несложных преобразований, получим уравнение

. (3.6)

Фазовый портрет для этого случая показан на рис. 24.

Рис. 23. Фазовый портрет системы с затуханием меньше критического. Рис. 24. Фазовый портрет системы с затуханием больше критического.

При w 0 > d мы имеем дело с затухающими колебаниями линейного осциллятора, фазовый портрет которых представляет собой совокупность спиралей, стягивающихся в особую точку типа фокус. Для w 0 < d система становится апериодической, и на фазовой плоскости движения изображаются фазовыми траекториями, имеющими вид кривых, сходящихся в особую точку типа узел без обхода вокруг неё. В обоих случаях в диссипативных системах особые точки (фокус и узел) устойчивы и соответствуют единственному положению равновесия системы - состоянию покоя, к которому система приходит из любых начальных условий, при любом начальном смещении или скорости.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.