Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Тема 3. Свободные колебания в диссипативных системах с одной степенью свободы Вопрос 6
В неконсервативных системах полная энергия не сохраняется, поэтому уравнение фазовых траекторий уже не может иметь вид уравнения (2.5). Мы можем записать его с учётом соотношения (1.35), где введена функция Рэлея, которая описывает убыль энергии. Функция Рэлея: ; Так как функция F(x, y) описывает убыль энергии, то можно сказать, что функция W (t) определяет запас колебательной энергии системы. В консервативной системе она бы сохранялась. Естественно, что для автономных диссипативных систем dW / dt < 0, т. е. энергия с течением времени уменьшается. Для простейшей диссипативной системы уравнение (2.5) принимает вид:
Введём так называемую функцию диссипации . Теперь продифференцируем уравнение (3.1) по времени, тогда или . Это уравнение по сути дела есть уравнение закона Ньютона: ускорение равняется действующей силе. Здесь F (x) - потенциальная сила, зависящая от координаты, а f (x, y)/ y - сила трения, зависящая от скорости. В физически реализуемых колебательных системах диссипация всегда связана с движением. Для покоящегося тела диссипации быть не должно, т. е. f (x, y)/ y ® 0 при y ® 0. Мы сказали, что для диссипативных систем dW / dt < 0, а это значит, что функция f (x, y) > 0. Следовательно, функция f (x, y)/ y имеет знак совпадающий со знаком y. Наличие диссипации в системе изменяет характер особых точек. Если для математического маятника особыми точками были центр и седло, то для диссипативных систем вместо центра появляются фокус или узел, в зависимости от величины диссипации. Для анализа систем с малыми диссипациями и малыми нелинейностями существуют специальные приближённые методы, в частности, метод медленно меняющихся амплитуд. Рассмотрим этот метод на задачах, имеющих аналитическое решение (чтобы было с чем сравнивать), а потом уже будем применять там, где нет аналитических решений.
|