Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Тема 2. Консервативные системы с одной степенью свободы Вопрос 4
Как известно, консервативные системы - это системы, в которых сохраняется полная колебательная энергия. Одна степень свободы говорит о том, что колебательный процесс описывается одной обобщённой координатой. Понятно, что это некоторая идеализация (абсолютно консервативных систем не существует), однако, возможны системы, которые к ним достаточно близки (высокодобротный колебательный контур, маятник с малым затуханием на хорошем подвесе). В любом случае, тому, что энергия сохраняется, отвечают, например, колебательные системы, которые описываются уравнениями вида (1.36) при условии, что правая часть зависит от обобщённых координат, но не от обобщённых скоростей, т. е. (здесь все множители нормированы на единицу массы). Тогда выражение для кинетической энергии должно иметь вид: , где (обобщённая скорость). Так как потенциальная сила есть производная потенциальной величины по обобщённой координате, тогда сама потенциальная энергия есть интеграл
(здесь в положении q 0 просто ставится ноль потенциальной энергии). Ниже следуют примеры консервативных систем. 1. Груз массы m на пружине жёсткостью k. Его колебания описываются уравнением , где . 2. Резонансный LC-контур без сопротивления: , где q - заряд на пластинах конденсатора. 3. Математический маятник длиной l: , .
|