Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Функция автокорреляции дискретных и кодированных сигналов
Последовательность одинаковых прямоугольных импульсов может служить математической моделью кодированных сигналов. В практических приложениях важной характеристикой является не форма функции автокорреляции, а максимумы ее основного и побочных лепестков, которые достаточно просто вычисляются.
Традиционное представление сигналов в двоичном исчислении {0, 1} переведем в пространство кодов Грэя {1, -1}. Математическая модель из М позиций , в которой каждый член , дополняется нулями на «пустых» позициях, например . При обработке дискретных сигналов наиболее распространенной операцией является операция сдвига. На основе операций сдвига можно сконструировать автокорреляционную функцию дискретного сигнала, заменив интегрирование в (2.51) суммированием, а переменную – на число сдвигов 
| (2.59)
| Функция целочисленного аргумента и функция имеют общие свойства: четность , и при нулевом сдвиге обе функции определяют энергию дискретного сигнала
Для примера выпишем сигнал и его копии, сдвинутые на 1, 2, 3 и 4 позиции соответственно

и вычислим компоненты функции автокорреляции по формуле (2.59), получим (рис 2.43)






Рис. 2.43 Автокорреляционная функция дискретного сигнала
Корреляционные свойства сигнала оптимальны, если боковые лепестки функции минимальны.
В таблице 2.2 представлены модели сигналов с совершенными корреляционными свойствами – сигналы (коды) Баркера, боковые лепестки которых не превышают уровня .
Таблица 2.2
М
| Модель сигнала
|
| | |
|
| 1 1 -1
| 3 0 -1
|
| 1 1 1-1
| 4 1 0 -1
|
| 1 1-1 1
| 4-1 0 1
|
| 1 1 1-1 1
| 5 0 1 0 1
|
| 1 1 1 -1-1 1-1
| 7 0-1 0-1 0-1
|
| 1 1 1 -1 -1 -1 1-1-1 1-1
| 11 0-1 0-1 0-1 0-1 0-1
|
| 1 1 1 1 1 -1-1 1 1-1 1-1 1
| 13 0 1 0 1 0 1 0 1 0 1 0 1
|
|