Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Спектральная плотность сигнала. Преобразование Фурье
Рис. 1.16 Импульсная последовательность Одиночный импульсный сигнал получим путем устремления Т → ∞ (рис. 1.16). Тогда гармоники nω 1 и (n + 1)ω 1 можно считать близкими друг к другу, а nω 1 → ω (становится текущим значением частоты). Амплитуды в этом случае являются малыми величинами, т.к. в ряде (1.33). Учитывая, что коэффициенты Фурье образуют комплексно-сопряженные пары и , отображающие гармоническое колебание, то справедливо соотношение с комплексной амплитудой . Здесь – действительная амплитуда. В малом интервале частот ∆ ω содержится пар спектральных компонент. Частоты этих компонент отличаются сколь угодно мало, и можно складывать компоненты так, как если бы они имели одну и ту же частоту и характеризовались одинаковыми комплексными амплитудами Тогда комплексную амплитуду эквивалентного гармонического сигнала, отображающего вклад всех спектральных компонент из ∆ ω, можно записать в виде Величину
отражающую амплитудное содержание сигнала ) в полосе частот, называют его спектральной плотностью. Выражение (1.37) известно еще как преобразование Фурье сигнала , в котором спектральная плотность является масштабным множителем, связывающим малую длину интервала ∆ ω и отвечающую ему комплексную амплитуду гармонического сигнала на центральной частоте
|