Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Однородные относительно аргумента и искомой функции дифференциальные уравнения первого порядка. Их решение.






    Однородные дифференциальные уравнения 1-го порядка.

    Определение 1. Уравнение 1-го порядка называется однородным, если для его правой части при любых справедливо соотношение , называемое условием однородности функции двух переменных нулевого измерения.

    Пример 1. Показать, что функция - однородная нулевого измерения.

    Решение.

    ,

    что и требовалось доказать.

    Теорема. Любая функция - однородна и, наоборот, любая однородная функция нулевого измерения приводится к виду .

    Доказательство.

    Первое утверждение теоремы очевидно, т.к. . Докажем второе утверждение. Положим , тогда для однородной функции , что и требовалось доказать.

    Определение 2. Уравнение (4.1)

    в котором M и N – однородные функции одной и той же степени, т.е. обладают свойством при всех , называется однородным.

    Очевидно, что это уравнение всегда может быть приведено к виду (4.2), хотя для его решения можно этого и не делать.

    Однородное уравнение приводится к уравнению с разделяющимися переменными с помощью замены искомой функции y по формуле y=zx, где z(x) – новая искомая функция. Выполнив эту подстановку в уравнении (4.2), получим: или или .

    Интегрируя, получаем общий интеграл уравнения относительно функции z(x) , который после повторной замены дает общий интеграл исходного уравнения. Кроме того, если - корни уравнения , то функции - решения однородного заданного уравнения. Если же , то уравнение (4.2) принимает вид

    и становится уравнением с разделяющимися переменными. Его решениями являются полупрямые: .

    Замечание.Иногда целесообразно вместо указанной выше подстановки использовать подстановкуx=zy.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.