Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тригонометрические ряды Фурье. Нахождение коэффициентов ряда Фурье.






Тригонометрический ряд Фурье — представление произвольной функции с периодом в виде ряда

(1)

или используя комплексную запись, в виде ряда:

.

Тригонометрическим рядом Фурье функции называют функциональный ряд вида

(1)

где

Числа , и () называются коэффициентами Фурье функции . Формулы для них можно объяснить следующим образом. Предположим, мы хотим представить функцию в виде ряда (1), и нам надо определить неизвестные коэффициенты , и . Если умножить правую часть (1) на и проинтегрировать по промежутку , благодаря ортогональности в правой части все слагаемые обратятся в нуль, кроме одного. Из полученного равенства легко выражается коэффициент . Аналогично для

Ряд (1) сходится к функции в пространстве . Иными словами, если обозначить через частичные суммы ряда (1):

,

то их среднеквадратичное отклонение от функции будет стремиться к нулю:

.

Несмотря на среднеквадратичную сходимость, ряд Фурье функции, вообще говоря, не обязан сходиться к ней поточечно(см.ниже).

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.