Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Преобразование Фурье.
Преобразование Фурье — преобразование функции, превращающее её в совокупность частотных составляющих. Более точно, преобразование Фурье — это интегральное преобразование, которое раскладывает исходную функцию на базисные функции, в качестве которых выступают синусоидальные функции, то есть представляет исходную функцию в виде интеграла синусоид различной частоты, амплитуды и фазы. Преобразование названо по имени Жана Фурье. Непрерывное преобразование Фурье Наиболее часто термин «преобразование Фурье» используют для обозначения непрерывного преобразования Фурье, представляющего любую квадратично- интегрируемую функцию как сумму (интеграл Фурье) комплексных показательных функций с угловыми частотами и комплексными амплитудами . Преобразование имеет несколько форм, отличающихся постоянными коэффициентами. , , , где . В разных областях науки и техники могут преобладать различные формы (поэтому иногда надо уточнять определение). См. непрерывное преобразование Фурье для дополнительной информации, включая таблицу преобразований, обсуждение свойств преобразования и разнообразные соглашения. Обобщенным случаем такого преобразования является дробное преобразование Фурье, посредством которого преобразование можно возвести в любую вещественную «степень». Ряды Фурье Непрерывное преобразование само фактически является обобщением более ранней идеи рядов Фурье, которые определены для периодических функций или функций, существующих на ограниченной области (с периодом ), и представляют эти функции как ряды синусоид: , где — комплексная амплитуда. Или, для вещественнo -значных функций, ряд Фурье часто записывается как: , где и — (действительные) амплитуды ряда Фурье. Дискретное преобразование Фурье Для использования в компьютерах, как для научных расчетов, так и для цифровой обработки сигналов, необходимо иметь функции , которые определены на дискретном множестве точек вместо непрерывной области, снова периодическом или ограниченном. В этом случае используется дискретное преобразование Фурье (DFT), которое представляет как сумму синусоид: , где — амплитуды Фурье. Хотя непосредственное применение этой формулы требует операций, этот расчет может быть сделан за операций используя алгоритм быстрого преобразования Фурье (БПФ, FFT) (см. O-большое), что делает преобразование Фурье практически важной операцией на компьютере. Оконное преобразование Фурье Классическое преобразование Фурье имеет дело со спектром сигнала, взятым во всем диапазоне существования переменной. Нередко интерес представляет только локальное распределение частот, в то время как требуется сохранить изначальную переменную (обычно время). В этом случае используется обобщение преобразования Фурье, так называемое оконное преобразование Фурье. Для начала необходимо выбрать некоторую оконную функцию: где даёт (вообще говоря несколько искажённое) распределение частот части оригинального сигнала в окрестности времени .
|