Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Интеграл вероятностей
Более удобной для табулирования является функция , называемая интегралом вероятностей
Численно функция равна заштрихованной площади на рис. 3.3. (в осях t и ). — функция нечётная, т.е. , что позволяет объём таблиц для неё сократить вдвое по сравнению с таблицами для . В Приложении B приводится таблица значений функции . Рис. 3.3 — Интеграл вероятностей По графикам, представленным на рис. 3.2 и рис.3.3, можно установить соотношение между и . Согласно 2‑ му свойству плотности вся площадь под кривой распределения равна единице. Заштрихованную на рис. 3.2 площадь, численно равную , разобьём на две части (от до 0 и от 0 до t), одна из которых равна 0, 5, а вторая — . Получаем формулу связи функции распределения и интеграла вероятностей
Формула с учётом примет вид:
Известно также, что функция представляет собой вероятность попадания случайной величины Х в интервал, симметричный относительно математического ожидания (в осях х и ), т.е.
Для случайных ошибок измерений выражение примет вид:
Так, для по таблице Приложения B находим , а для находим . На основании этих теоретических расчетов устанавливают допуски в инструкциях, назначают предельные ошибки по правилу: (или ) Результаты измерений, у которых ошибки превышают предельную, равную 2s (или 3s), бракуют, и измерения переделывают заново. Задача 3.1. Найти вероятность того, что ошибка измерений угла D не превзойдёт по абсолютной величине 6, 0², если СКО измерений угла равно 10, 0², а математическое ожидание ошибок измерений равно нулю (это означает отсутствие систематических ошибок). Решение: и — найти . С учётом симметричности пределов и свойства функции , получаем по формуле (Значение интеграла вероятностей находим по таблице Приложения B).
|