Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Многократные испытания. Формула Бернулли






 

Если необходимо определить вероятность того, что при n независимых многократных испытаниях событие А появится ровно k раз, то применяем формулу Бернулли:

,  

где — искомая вероятность; p — вероятность появления события А в каждом отдельном испытании (постоянная для всех испытаний); q — вероятность непоявления события А в отдельном испытании (очевидно, что ); — число сочетаний из n по k.

;

; ; .

Если k придавать значения от 0 до n (т.е. ), а вероятности вычислять по формуле Бернулли, то получится совокупность вероятностей: , которая носит название биномиального распределения вероятностей.

Заметим, что .

Задача 1.5. По одной и той же мишени в одинаковых условиях произведено 3 независимых выстрела. Вероятность попадания в мишень при одном выстреле равна 0, 3. Определить вероятности следующих событий:

1) Мишень будет поражена ровно k раз (причём ).

Решение: так как ; ; ; , то имеем:

;

;

;

.

Контроль: 0, 34+0, 44+0, 19+0, 03=1, 00.

2) В мишени будет не менее двух пробоин:

.

3) Мишень будет поражена не более двух раз:

.

4) Мишень будет поражена хотя бы один раз:

.

Вероятнейшим числом появлений события А при n многократных испытаниях называют число k 0, соответствующее наибольшей при данных условиях вероятности, т.е. k 0 находится из неравенства

.  

Следует заметить, что левая и правая части неравенства отличаются на единицу. Если p выражается числом, не близким к нулю или единице, то при большом значении n вероятнейшее число находят по формуле

.  

Задача 1.6. Найти вероятнейшее число попаданий в мишень по условию задачи 1.5.

Решение:

1) Так как максимальное значение вероятности соответствует числу , то, очевидно, есть вероятнейшее число попаданий в мишень.

2) Применим неравенство:

; ; .







© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.