Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Многократные испытания. Формула Бернулли
Если необходимо определить вероятность того, что при n независимых многократных испытаниях событие А появится ровно k раз, то применяем формулу Бернулли:
,
|
| где — искомая вероятность; p — вероятность появления события А в каждом отдельном испытании (постоянная для всех испытаний); q — вероятность непоявления события А в отдельном испытании (очевидно, что ); — число сочетаний из n по k.
;
; ; .
Если k придавать значения от 0 до n (т.е. ), а вероятности вычислять по формуле Бернулли, то получится совокупность вероятностей: , которая носит название биномиального распределения вероятностей.
Заметим, что .
Задача 1.5. По одной и той же мишени в одинаковых условиях произведено 3 независимых выстрела. Вероятность попадания в мишень при одном выстреле равна 0, 3. Определить вероятности следующих событий:
1) Мишень будет поражена ровно k раз (причём ).
Решение: так как ; ; ; , то имеем:
;
;
;
.
Контроль: 0, 34+0, 44+0, 19+0, 03=1, 00.
2) В мишени будет не менее двух пробоин:
.
3) Мишень будет поражена не более двух раз:
.
4) Мишень будет поражена хотя бы один раз:
.
Вероятнейшим числом появлений события А при n многократных испытаниях называют число k 0, соответствующее наибольшей при данных условиях вероятности, т.е. k 0 находится из неравенства
.
|
| Следует заметить, что левая и правая части неравенства отличаются на единицу. Если p выражается числом, не близким к нулю или единице, то при большом значении n вероятнейшее число находят по формуле
.
|
| Задача 1.6. Найти вероятнейшее число попаданий в мишень по условию задачи 1.5.
Решение:
1) Так как максимальное значение вероятности соответствует числу , то, очевидно, есть вероятнейшее число попаданий в мишень.
2) Применим неравенство:
; ; .
|