Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Теорема про нерівність для наборів з двох чисел






    Розглянемо дві одномонотонні послідовності, які складаються з двох чисел: і .Для цих наборів чисел складемо дві суми і .

    Теорема 1. Для одномотонних наборів з двох чисел має місце нерівність:

    .

    Доведення. Розглянемо різницю лівої і правої частин нерівностей: , звідки отримаємо потрібну нерівність.

    Зауваження. Нерівність, яка доведена у цій теоремі, називається перерозміщувальною нерівністю для одномонотонних послідовностей, які складаються з двох елементів.

    Розглянемо приклади доведення нерівностей за допомогою цієї теореми. Приклад 1. Довести, що для додатних дійсних чисел а i b має місце нерівність .

    Розв’язання. Нехай , тоді , отже , що треба було довести.

    Приклад 2. Довести, що для додатних дійсних чисел а i b має місце нерівність .

    Розв’язання. Нехай , тоді , використаємо теорему , що треба було довести.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.