Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Изометрии






    Определение. Линейный оператор f евклидова пространства Е в себя называется изометрией, если он сохраняет скалярное произведение, т. е. если

    (7.18)

    Изометрии в комплексном евклидовом пространстве называются унитарными операторами, а в действительном – ортогональными.

    Теорема 7.10. Если l – собственное значение изометрии, то |l|=1.

    ► Пусть – собственный вектор изометрии , l – его собственное значение. Положим . Тогда: (7.18) .◄

    Замечание. Собственные значения ортогонального оператора равны 1 или –1. Ортогональный оператор в пространстве четной размерности может и не иметь собственных значений, но в пространстве нечетной размерности имеет хотя бы одно.

    Теорема 7.11. Для того чтобы линейный оператор был изометрией, необходимо и достаточно, чтобы он сохранял длины векторов.

    Необходимость очевидна.

    Достаточность (доказываем для комплексного случая). Пусть f сохраняет длины векторов, т. е. . Тогда :

    . (7.19)

    Так как (7.19) справедливо для всех комплексных l, то при l = 1 получаем . Если же , то (7.19) принимает вид , и, таким образом, утверждение доказано.◄

    Следствие. Ортогональный оператор сохраняет углы между векторами.

    Теорема 7.12. Изометрия любой ортонормированный базис пространства переводит в ортонормированный базис. Обратно, если линейный оператор некоторый ортонормированный базис пространства переводит в ортонормированный базис, то f – изометрия.

    ► Первое утверждение, очевидно, справедливо. Действительно, согласно определению, ортонормированный базис переходит в ортонормированную систему из n векторов, которая в силу теоремы 6.4 линейно независима и поэтому в n -мерном линейном пространстве является базисом.

    Обратно. Пусть линейный оператор некоторый ортонормированный базис

    (7.20)

    пространства переводит в ортонормированный базис

    , (7.21)

    и пусть и – произвольные векторы пространства . Тогда каждый из векторов и можно разложить по базису (7.20): Так как базисы (7.20) и (7.21) ортонормированны, то . Значит,

    и, таким образом, f – изометрия.◄

    Теорема 7.13. Для того чтобы линейный оператор был изометрией, необходимо и достаточно, чтобы .

    ► На основании теоремы 7.2 любой линейный оператор имеет сопряженный. Тогда:

    { f – изометрия}

    [лемма 7.1] { }. (7.22)

    Если А – матрица оператора в некотором ортонормированном базисе пространства , то – матрица оператора в том же базисе, и из (7.22) для изометрии получаем

    . (7.23)

    Из (7.23) вытекает, во-первых, что матрица изометрии невырождена, значит, любая изометрия – невырожденный линейный оператор, причем . Во-вторых, для того чтобы линейный оператор f комплексного евклидова пространства в себя был унитарным, необходимо и достаточно, чтобы его матрица в некотором, а значит, и в любом ортонормированном базисе пространства была унитарной. Для того чтобы линейный оператор f действительного евклидова пространства в себя был ортогональным, необходимо и достаточно, чтобы его матрица в некотором, а значит, и в любом ортонормированном базисе пространства была ортогональной.◄






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.