Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Волновые пакеты
Решение (1.26) для оптических сигналов в общем виде ищем в виде ряда Фурье:
Здесь определяет элемент объема в k - пространстве, где - пространственные частоты или проекции волнового вектора на выбранные направления . Лазерный импульс и его Фурье-образ в k -пространстве показаны на рис.1.3. Ограниченность длительности лазерного импульса приводит к существованию конечной полосы частот или полосы длин волн. Линейность уравнений Максвелла позволяет представлять сигналы в виде линейной комбинации плоских волн с различными частотами. Однако, при распространении сигнала с конечным спектром частот (импульса) в диспергирующей среде, в которой фазовая скорость зависит от частоты, возникает ряд особенностей, в частности, увеличение длительности или «уширение» импульса.
Рис. 1.3. Лазерный импульс конечной длительности и его Фурье-спектр в пространстве волновых чисел
Дисперсионное уравнение, устанавливающее связь между круговой частотой и волновым вектором для электромагнитного поля, можно записать в виде:
, (1.27)
где величины и считаем вещественными. Оптический (лазерный) импульс можно охарактеризовать центральной частотой или центральным волновым вектором и шириной полосы или . Рассмотрим эволюцию такого импульса во времени. Разложим функцию в ряд Тейлора в окрестности :
(1.28)
Подставив (1.28) в (1.23) получим:
.
С точностью до общего фазового множителя лазерный импульс распространяется с сохранением своей формы со скоростью:
,
которая называется групповой скоростью импульса. В общем виде, когда плотность энергии лазерного импульса связана с квадратом модуля амплитуды, групповая скорость представляет собой скорость переноса энергии. При этом групповая и фазовая скорости различны, т.е. . В оптике дисперсионные свойства среды описываются функцией показателя преломления от частоты . Фазовая и групповая скорости в диспергирующей среде записываются как
(1.29)
При нормальной дисперсии () групповая скорость меньше фазовой. В областях аномальной дисперсии величина может быть большой и отрицательной. Если спектральная ширина импульса равна , то разброс в групповых скоростях имеет величину порядка:
. При распространении импульса уширение импульса составляет величину .
|