Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Волновое уравнение и плоские волны






    В случае отсутствия источников в свободном пространстве проделаем простые линейные преобразования с уравнениями (1.5). Для этого применим оператор к левой и правой части уравнения для электрической компоненты поля и воспользуемся выражением для . Получим волновое уравнение для электрического поля [3]:

    , (1.21)

     

    (1.22)

     

    Для материальной среды с параметрами волновое уравнение имеет вид:

     

    (1.23)

     

    Решение волнового уравнения в виде плоской волны запишем, как:

     

    . (1.24)

     

    Для подвижной системы координат, движущейся со скоростью волны, траектория движения должна удовлетворять условию:

     

    . (1.25)

     

    Уравнение (1.25) является уравнением плоскости, перпендикулярной в любой момент времени волновому вектору . Эта плоскость называется поверхностью постоянной фазы и перемещается в пространстве со скоростью, называемой фазовой скоростью . Перейдя к комплексным амплитудам в (1.23), получим волновое уравнение:

     

    (1.26)  

    где - фазовая скорость волны и скорость света в вакууме соответственно.

    Решение волнового уравнения для оси представляет собой суперпозицию двух плоских волн:

     

     

    Здесь комплексная амплитуда сигнала . Таким образом, каждый гармонический источник на оси создает две плоские волны: прямую волну () и обратную- ().

    В декартовой системе координат каждый волновой вектор имеет три проекции или три пространственные частоты.

     

     

    Следует заметить, что в радиотехнике используется временная форма сигнала , в то время как в оптике – пространственная форма сигнала . Ниже приведена пространственно-временная аналогия гармонических сигналов (рис. 1.2).

     

     

    Рис.1.2. Пространственно- временная аналогия сигналов

     

    Круговая частота и пространственная частота на направление определяются как:

    , ,

    где - угол между волновым вектором и нормалью к выбранной оси .

    Таким образом, пространственная частота на данное направление зависит от длины волны и направления распространения волны к выбранному направлению. Размерность пространственной частоты - см-1.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.