![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Цепи Маркова с дискретным временем
Способы математического описания марковского случайного процесса, протекающего в системе с дискретными состояниями, существенно зависят от того, в какие моменты времени происходят переходы (скачки) системы из состояния в состояние. Марковский случайный процесс называется процессом с дискретным временем, если переходы системы из состояния в состояние возможны только в определенные, заранее фиксированные, моменты времени t1, t2, …. Причем в промежутках времени между этими моментами система сохраняет свое состояние. Эти заранее известные моменты времени принято называть шагами процесса и рассматривать случайный процесс, происходящий в системе, как функцию целочисленного аргумента – номера шага k. Пусть Случайная последовательность событий Вероятности перехода системы из любого состояния Цепь Маркова называется однородной, если переходные вероятности не зависят от номера шага, т.е. не изменяются от шага к шагу. В противном случае цепь Маркова называется неоднородной. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Для определения вероятностей состояний системы после любого k -го шага используется формула, которая называется равенством Маркова:
Как следует из этой формулы, вероятности состояний системы после k -го шага определяются через вероятности состояний после предыдущего (k – 1)-го шага. При проведении практических расчетов чаще используется равенство Маркова, записанное в матричной форме:
где
ПРИМЕР: Найдите вероятности состояний после 2 шага некоторой системы, для которой известно, что в начальный момент она находится в состоянии
Согласно условию, для начального момента (k = 0) запишем: Искомые вероятности состояний после второго шага будут равны: Таким образом, после второго шага вероятнее всего система будет находиться в состоянии
|