Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Цепи Маркова с дискретным временем






    Способы математического описания марковского случайного процесса, протекающего в системе с дискретными состояниями, существенно зависят от того, в какие моменты времени происходят переходы (скачки) системы из состояния в состояние.

    Марковский случайный процесс называется процессом с дискретным временем, если переходы системы из состояния в состояние возможны только в определенные, заранее фиксиро­ванные, моменты времени t1, t2, …. Причем в промежутках времени между этими моментами система сохраняет свое состояние.

    Эти заранее известные моменты времени принято называть шагами процесса и рассматривать случайный процесс, происходящий в системе, как функцию целочисленного аргумен­та – номера шага k.

    Пусть имеется система S, которая имеет возможные состояния . Обозначим как событие, состоящее в том, что после k шагов система находится в состоянии . Обозначим вероятность события через и назовем эту вероятность – вероятностью i -го состояния после k -го шага. Очевидно, что для любого шага k события образуют полную группу, т.к. система может находиться только в одном из своих состояний, поэтому можно записать: .

    Случайная последовательность событий называется цепью Маркова, если для каждого шага вероятность перехода системы из любого состояния в любое состояние не зависит от того, когда и каким образом система пришла в состояние .

    Вероятности перехода системы из любого состояния в любое состояние за один шаг можно записать в виде квадратной матрицы переходных вероятностей . В этой матрице некоторые элементы могут быть равны нулю, что означает невозможность перехода системы из i -го состояния в j -е, а на главной диагонали располагаются вероятности задержки системы в состоянии .

    Цепь Маркова называется однородной, если переходные вероятности не зависят от номера шага, т.е. не изменяются от шага к шагу. В противном случае цепь Маркова называется неоднородной.

    Для определения вероятностей состояний системы после любого k -го шага используется формула, которая называется равенством Маркова:

    Как следует из этой формулы, вероятности состояний системы после k -го шага определяются через вероятности состояний после предыдущего (k – 1)-го шага. При проведении практических расчетов чаще используется равенство Маркова, записанное в матричной форме:

    ,

     

    где матрица-строка вероятностей состояний после (k – 1)-го шага, а матрица-столбец искомых вероятно­стей после k -го шага.

     

    ПРИМЕР: Найдите вероятности состояний после 2 шага некоторой системы, для которой известно, что в начальный момент она находится в состоянии , а матрица переходных вероятностей имеет вид:

     

    Согласно условию, для начального момента (k = 0) запишем: . Для вероятностей состояний системы после первого шага, используя равенство Маркова в матричной форме, можно записать:

    Искомые вероятности состояний после второго шага будут равны:

    Таким образом, после второго шага вероятнее всего система будет находиться в состоянии .

     

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.