Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Элементы теории. Интегральное среднеквадратическое приближение






    Quot; Интегральное среднеквадратическое приближение

    функций тригонометрическими многочленами"

    Элементы теории

     

    Пусть на отрезке [ a, b ] задана функция f(x) и определена система функций gk(x), k = 0, 1, 2, … Обобщенным многочленом (полиномом) порядка n относительно системы функций gk(x) называют функцию вида:

    ,

    где С0 , С1 , …, Сn – некоторые постоянные.

    Обобщенный многочлен Qn(x) называют многочленом наилучшего среднеквадратичного приближения функции f(x) на отрезке [ a, b ], если расстояние от многочлена до функции f(x) по среднеквадратичной норме наименьшее:

    . (1)

    Таким образом, сформулирована задача об интегральном среднеквадратичном приближении (аппроксимации) функции f(x) на отрезке [ a, b ] обобщенным многочленом, которая сводится к выбору коэффициентов С0 , С1 , …, Сn из условия (1).

    Задача нахождения многочлена наилучшего приближения Qn(x) функции f(x) на отрезке [ a, b ] упрощается, если система функций gk(x) обладает свойством ортогональности на отрезке [ a, b ].

    Скалярным произведением функций gi(x) и gj(x) на отрезке [ a, b ] называется интеграл от их произведения на этом отрезке:

    .

    Число является нормой функции gi(x) на отрезке [ a, b ], а функция f(x), для которой существует интеграл , называется интегрируемой с квадратом на отрезке [ a, b ].

    Функции gi(x) и gj(x) называется ортогональными на отрезке [ a, b ], если их скалярное произведение на этом отрезке равно нулю:

    .

    Система функций gk(x) называется ортогональной на отрезке [ a, b ], если все функции этой системы попарно ортогональны на этом отрезке.

    Коэффициенты С0 , С1 , …, Сn обобщенного многочлена называются коэффициентами Фурье функции f(x) относительно системы функций gk(x), если они определяются по формулам:

    . (2)

    Теорема. Для любой функции f(x), интегрируемой с квадратом на отрезке [ a, b ], обобщенный многочлен n -го порядка Qn(x) с коэффициентами Фурье функции f(x) относительно ортогональной на отрезке [ a, b ] системы функций gk(x), k = 1, 2, … является многочленом наилучшего среднеквадратичного приближения этой функции, причем квадрат наименьшего среднеквадратичного отклонения определяется соотношением:

    , (3)

    где Сk коэффициенты Фурье, вычисленные по формуле (2).

    Из (3) видно, что с увеличением порядка обобщенного многочлена среднеквадратичное отклонение не увеличивается.

    Пусть задана система тригонометрических функций на отрезке [ -l, l ]:

    (4)

    Тригонометрическим многочленом n -ой степени называют обобщенный многочлен по системе тригонометрических функций, имеющий вид:

    , (5)

    где С0 , С1 , …, Сn, D1 …, Dn – некоторые числа.

    Система тригонометрических функций ортогональна на отрезке
    [ -l, l ].

    На основании теоремы для функции f(x), интегрируемой с квадратом на отрезке [-l, l], тригонометрическим многочленом наилучшего среднеквадратичного приближения является тригонометрический многочлен

    (6)

    где коэффициенты Фурье по системе тригонометрических функций для функции f(x) определяются формулами (2) и имеют вид:

    (7)

    Среднеквадратичное отклонение аппроксимирующего многочлена от функции f(x), вычисляемое по формуле (3), в данном случае имеет вид:

    (8)

    Среднеквадратичное отклонение, отнесенное к норме аппроксимируемой функции , характеризует точность приближения и обозначается

    (9)

    В частном случае, когда f(x) – четная функция на отрезке [ -l, l ], тригонометрический многочлен наилучшего среднеквадратичного приближения записывается в виде:

    , (10)

    где коэффициенты Фурье

    (11)

    Для нечетной функции f(x) на отрезке [ -l, l ] тригонометрический многочлен наилучшего среднеквадратичного приближения записывается в виде:

    , (12)

    Тригонометрический многочлен (6) с коэффициентами Фурье (7) представляет собой n -ю частичную сумму ряда Фурье, сходящегося к функции f(x) на отрезке [ -l, l ]:

    . (13)






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.