![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Понятие численного интегрирования
Во многих научных и технических задачах интегрирование функций является важной составной частью математического моделирования площадей и объемов, значений работы, произведенной некоторыми силами и многие другие технические задачи. Напомним, что геометрический смысл простейшего определенного интеграла
от f (x) ³ 0, как известно, состоит в том, что значение величины I – это площадь, ограниченная кривой y = f (x), осью абсцисс и прямыми x = a, x = b Рис. 6.1
Во многих случаях, когда функция f (x) в (1) задана в аналитическом виде, определенный интеграл вычисляется непосредственно с помощью неопределенного интеграла (посредством первообразной) по формуле Ньютона-Лейбница:
Однако формулой (2) на практике можно воспользоваться не всегда, а именно: – когда вид f (x) не допускает непосредственного интегрирования, т.е. первообразная F (x) не выражается в элементарных функциях; – если значения f (x) заданы в табличной форме. Универсальным подходом для решения поставленной задачи является использование методов численного интегрирования, основанных на аппроксимации подынтегральной функции с помощью интерполяционных многочленов различных степеней. Следует подчеркнуть, что основная идея численного интегрирования заложена уже в определении известного интеграла Римана от f (x), формально записанного в виде (1). Напомним суть этого определения. Пусть вещественная функция f (x) определена и ограничена на интервале [ a, b ]. Разобьем его на n произвольных частичных интервалов [ xi, xi +1], 0£ i £ n –1, x 0 = a, xn = b. Выберем в каждом частичном интервале произвольную точку x, xi £ x£ xi +1 и составим, так называемую, интегральную сумму (рис. 6.1).
Если предел S при стремлении длины наибольшего частичного интервала к нулю существует для произвольных x i, то его называют интегралом Римана от f (x): Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
Тогда сумма (3) и дает простейший пример численного интегрирования. А ее верхняя S 2 и нижняя S 1 суммы определяют величину погрешности S, а именно:
Существующие на практике формулы численного интегрирования, по существу, отличаются от (3) только явным указанием способов: 1) выбора xi, x i; 2) ускорения сходимости в (4); 3) оценки погрешности посредством дополнительной информации о поведении f (x) (например, что f (x) Î C 2[ a, b ]). В качестве рабочего инструмента численного интегрирования вводится понятие квадратурной формулы для (1). Для этого обобщим понятие интегральной суммы (3). Точки x i (рис. 6.1), в которых вычисляются значения f (x) называются узлами, а коэффициенты (xi +1 – xi) в (3) заменяют некоторыми числами qi, не зависящими от f (x), называемыми весами. Формула (3) заменяется следующей:
где a £ x i £ b. Очевидно, что интеграл (1) согласно (5) следует записать в виде:
Формула (7) и называется квадратурной формулой, а R в (7) – погрешностью квадратурной формулы. При наличии альтернативы при выборе численных методов интегрирования следует заметить, что каждая конкретная квадратурная формула считается заданной, если указано, как выбирать x i, соответствующие веса qi, а также методика оценки погрешности R для определенных классов функций.
|