Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Понятие численного интегрирования






    Во многих научных и технических задачах интегрирование функций является важной составной частью математического моделирования площадей и объемов, значений работы, произведенной некоторыми силами и многие другие технические задачи. Напомним, что геометрический смысл простейшего определенного интеграла

    , (1)

    от f (x) ³ 0, как известно, состоит в том, что значение величины I – это площадь, ограниченная кривой y = f (x), осью абсцисс и прямыми x = a, x = b

    Рис. 6.1

     

    Во многих случаях, когда функция f (x) в (1) задана в аналитическом виде, определенный интеграл вычисляется непосредственно с помощью неопределенного интеграла (посредством первообразной) по формуле Ньютона-Лейбница:

    . (2)

    Однако формулой (2) на практике можно воспользоваться не всегда, а именно:

    – когда вид f (x) не допускает непосредственного интегрирования, т.е. первообразная F (x) не выражается в элементарных функциях;

    – если значения f (x) заданы в табличной форме.

    Универсальным подходом для решения поставленной задачи является использование методов численного интегрирования, основанных на аппроксимации подынтегральной функции с помощью интерполяционных многочленов различных степеней.

    Следует подчеркнуть, что основная идея численного интегрирования заложена уже в определении известного интеграла Римана от f (x), формально записанного в виде (1). Напомним суть этого определения.

    Пусть вещественная функция f (x) определена и ограничена на интервале [ a, b ]. Разобьем его на n произвольных частичных интервалов [ xi, xi +1], 0£ i £ n –1, x 0 = a, xn = b.

    Выберем в каждом частичном интервале произвольную точку x, xi £ x£ xi +1 и составим, так называемую, интегральную сумму (рис. 6.1).

    . (3)

    Если предел S при стремлении длины наибольшего частичного интервала к нулю существует для произвольных x i, то его называют интегралом Римана от f (x):

    . (4)

    Тогда сумма (3) и дает простейший пример численного интегрирования. А ее верхняя S 2 и нижняя S 1 суммы определяют величину погрешности S, а именно:

    (5)

    Существующие на практике формулы численного интегрирования, по существу, отличаются от (3) только явным указанием способов:

    1) выбора xi, x i;

    2) ускорения сходимости в (4);

    3) оценки погрешности посредством дополнительной информации о поведении f (x) (например, что f (x) Î C 2[ a, b ]).

    В качестве рабочего инструмента численного интегрирования вводится понятие квадратурной формулы для (1). Для этого обобщим понятие интегральной суммы (3). Точки x i (рис. 6.1), в которых вычисляются значения f (x) называются узлами, а коэффициенты (xi +1 xi) в (3) заменяют некоторыми числами qi, не зависящими от f (x), называемыми весами. Формула (3) заменяется следующей:

    , (6)

    где a £ x i £ b.

    Очевидно, что интеграл (1) согласно (5) следует записать в виде:

    . (7)

    Формула (7) и называется квадратурной формулой, а R в (7) – погрешностью квадратурной формулы. При наличии альтернативы при выборе численных методов интегрирования следует заметить, что каждая конкретная квадратурная формула считается заданной, если указано, как выбирать x i, соответствующие веса qi, а также методика оценки погрешности R для определенных классов функций.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.