Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Метод хорд. Пусть корень С уравнения f(x)=0 отделен на [a,b]
Пусть корень С уравнения f (x)=0 отделен на [ a, b ]. Функция f (x) непрерывна на отрезке и на его концах имеет разные знаки. Точки А и В имеют координаты соответственно (a, f (a)) и (b, f (b)) Искомым корнем С будет пресечение f (x) с осью ОХ. В начале итераций вместо С ищется приближение x 1, как результат пересечения ОХ с хордой АВ. Уравнение прямой АВ запишем в виде . Полагая у = 0, находим . Это можно записать в виде: или (14) Если x 1 оказывается недостаточно точным, находят второе приближение: . (15) На основании (14) и (15) можно записать рекуррентную последовательность: , (16) если , и (17) если . Заметим, что на выделенном интервале [ a, b ] имеют место четыре типа расположения кривой f (x).
Для I-го f ' (x) > 0, f " (x) > 0, для II-го f ' (x) < 0, f " (x) < 0, для III-го f ' (x) > 0, f " (x) < 0; для IV-го f ' (x) < 0, f " (x) > 0. Тогда для I-го и для II-го используется (16), т.е. х 0 = а. Для III-го и IV-го используется (17), т.е. х 0 = b. В заключение заметим, что во всех методах для определения функции f (x) и ее производных целесообразно использовать схему Горнера.
|