Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Метод секущих. Этот метод является модификацией метода Ньютона в плане его реализации, т.е
Этот метод является модификацией метода Ньютона в плане его реализации, т.е. задача поиска корня связана лишь с вычислением значения функции f (x). Заменив производную f ' (xn) в методе Ньютона так называемой разделенной разностью по двум точкам xn и xn + hn, где hn – некоторый малый параметр, получим итерационную формулу , n = 0, 1, 2, …, (9) которая называется методом секущих. Приближение xn +1 является абсциссой точки пересечения секущей прямой, проведенной через точки (xn, f (xn)) и (xn + hn, f (xn + hn)) с осью х. Метод также одношаговый и при удачном подборе параметра h его сходимость, как и у метода Ньютона при упрощении его реализации. Имеются другие интерпретации формулы (9). В частности, метод Вегстейна, в котором для выбора параметра h используют предыдущую расчетную точку, т.е. берут hn = xn –1 – xn, тогда (9) имеет вид: , n = 0, 1, 2, … (10) Метод Вегстейна, очевидно, двухшаговый (m = 2), т.е. для вычисления требуется задать 2 начальные точки приближения, лучше всего x 0 = а; x 1 = b. Он медленнее метода секущих, однако, требует в 2 раза меньше вычислений f (x) и поэтому оказывается более эффективным. Целесообразным является использовать подходы к уточнению корня не выпускающие корень из выделенной «вилки», (отрезка [ a, b ]). Так, если f (b)× f " (x) > 0 для x Î [ a, b ], берут в качестве x 0 = a и уточнение корня производится по формуле , n =0, 1, 2, …, (11) а если f (a)× f " (x) > 0 для x Î [ a, b ], берут в качестве x 0 = b и уточнение корня производится по формуле , n =0, 1, 2, … (12)
|