Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Постановка задачи. Одной из важных практических задач при исследовании различных свойств математической модели в виде функциональной зависимости y = f(x) является нахождение






    Одной из важных практических задач при исследовании различных свойств математической модели в виде функциональной зависимости y = f (x) является нахождение значений x, при которых эта функция обращается в ноль, т.е. решение уравнения

    f (x) = 0. (1)

    Как правило, точное решение его можно получить только в исключительных случаях, так как оно в большинстве случаев носит нелинейный характер. Нелинейные уравнения делятся на два класса:

    1) алгебраические, содержащие только алгебраические выражения;

    2) трансцендентные, содержащие и другие функции (тригонометрические, показательные, логарифмические и др.).

    Методы решения нелинейных уравнений делятся на прямые и итерационные методы.

    Прямые методы позволяют записать корни в виде некоторых конечных соотношений (формул) для простых тригонометрических, логарифмических, показательных и простейших алгебраических уравнений.

    Однако подавляющее число практически значимых уравнений могут быть решено только итерационными методами, т.е. методами последовательных приближений (численными методами).

    Решение уравнений (1) при этом осуществляется в два этапа:

    1) определение местоположения, характера интересующего нас корня и выбор его начального значения;

    2) вычисление корня с заданной точностью e, посредством выбранного какого-либо вычислительного алгоритма.

    На первом этапе вначале определяют, какие корни требуется найти, например, только действительные или только положительные или наименьший корень и т.д. Затем находят отрезки из области определения функции y = f (x), взятой из (1), содержащие по одному корню.

    Имеются различные подходы к решению данной задачи для обоих видов нелинейных уравнений.

    На втором этапе используются итерационные методы, позволяющие с помощью некоторого рекуррентного соотношения

    (2)

    при выбранном начальном приближении к x * построить последовательность (xn).

    Как правило, всегда стоит задача обеспечения сходимости последовательности (2) к истинному значению корня x *. Сходимость достигается посредством выбора различными способами функций j в (2), которая зависит от f (x) и в общем случае от номера последовательности решений (n). При этом если при нахождении значения xn» xk » x *, используется одно предыдущее значение m =1, то такой метод называется одношаговым. Если используется m предыдущих значений, то метод называется m -шаговым и, как правило, с увеличением m вычислительные алгоритмы усложняются.

    Расчет по рекуррентной последовательности продолжается до тех пор, пока | xnxn –1| < e. Тогда последнее xn выбирается в качестве приближенного значения корня (x * » xn).

    На практике имеется большой выбор законов j, что обеспечивает многообразие численных итерационных методов решения нелинейных уравнений.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.