Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Указания к выполнению работы. Используется тот же порядок расчета, что и для методов прямоугольников
Используется тот же порядок расчета, что и для методов прямоугольников. Структура таблицы исходных данных и расчетных таблиц аналогичны. Формула трапеций имеет вид .
Вопросы к заданию 13 1. Как получить результаты вычисления определенного интеграла по методу трапеций, если известны результаты его вычисления по методам правых и левых прямоугольников при том же числе интервалов? 2. Докажите, что метод трапеций более точен, чем методы прямоугольников, и объясните причину. 3. Как аналитически вычислить предельную абсолютную погрешность интег-рирования по методу трапеций?
ЗАДАНИЕ 14. МЕТОД СИМПСОНА ДЛЯ ВЫЧИСЛЕНИЯОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ
14-1. Вычислить приближенное значение интеграла при заданном числе интервалов с помощью метода Симпсона. Оценить абсолютную погрешность по методу Рунге и относительную погрешность результата. Построить график подынтегральной функции. 14-2. Вычислить приближенное значение интеграла с абсолютной погрешностью, не превышающей 0, 001 с помощью метода Симпсона. Определить число интервалов интегрирования, при котором достигается требуемая точность. Построить график подынтегральной функции. Оценить относительную погрешность результата. Использовать исходные данные из предыдущих заданий по вычислению определенного интеграла.
|