Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Упражнения. 1) Если А – линейный оператор евклидова пространства V, то f(x, y) = (Ax, y), g(x, y) = (x, Ay) – билинейные формы
1) Если А – линейный оператор евклидова пространства V, то f(x, y) = (Ax, y), g(x, y) = (x, Ay) – билинейные формы. Докажите это. 2) Докажите, что билинейная форма f(x, y) = (Ax, y) симметрична тогда и только тогда, когда А – самосопряженный линейный оператор. 3) Пусть e 1, e 2, …, en и – базисы линейного пространства V, С – матрица перехода от первого базиса ко второму, А и – матрицы билинейной формы в этих базисах. Докажите, что . 4) Найдите матрицу билинейной формы и запишите соответствующую ей квадратичную форму а) (; б) (; в) ; г) . 5) Приведите с помощью невырожденного линейного преобразования переменных к каноническому виду (для которого матрица диагональная) билинейную форму: а) ; б) ; в) . 6) Покажите, что функция
является симметричной билинейной формой в пространстве многочленов степени . Приведите ее к каноническому виду при n = 3. 7) Докажите, что ранг билинейной функции равен 1 тогда и только тогда, когда она является произведением двух ненулевых линейных функций. 8) Функция f(x, y) называется инвариантной относительно линейного оператора линейного пространства V, если . Докажите, что все невырожденные линейные операторы, относительно которых функция f(x, y) инвариантна, образуют мультипликативную группу. 9) Найдите все линейные операторы двумерного линейного пространства, относительно которых инвариантна билинейная форма
|