Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Теории хрупкого разрушения
Первая теория прочности – теория наибольших нормальных напряжений (теория Галилея).
Критерий равнопрочности: напряженных состояния равнопрочны по хрупкому разрушению, если у них равны наибольшие нормальные напряжения .
Условие прочности при растяжении
.
Также можно использовать условие прочности для сжатия
. (2.7)
Данная теория нашла подтверждение только для весьма хрупких материалов (камень, бетон, кирпич). Ее основным недостатком является неучет двух главных напряжений.
Вторая теория прочности – теория наибольших линейных деформаций (теория Мариотта).
Критерий равнопрочности: напряженных состояния равнопрочны по хрупкому разрушению, если у них равны наибольшие линейные относительные деформации
.
Согласно закону Гука, при одноосном напряженном состоянии
.
Наибольшую линейную относительную деформацию при произвольном напряженном состоянии запишем, используя обобщенный закон Гука:
.
Приравнивая правые части, получим эквивалентное напряжение по второй теории
. (2.8)
Вторая теория применима только для хрупких материалов, в том числе для хрупких металлов.
|