Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Регрессионный анализ. Регрессионный анализ – раздел математической статистики, главная задача которого состоит в выводе на основании соответствующих выборочных совокупностей






    Регрессионный анализ – раздел математической статистики, главная задача которого состоит в выводе на основании соответствующих выборочных совокупностей уравнения регрессии, устанавливающего связь между значениями зависимой (эндогенной) переменной (результирующим показателем) и значениями независимых (экзогенных) переменных.

    Указанную связь будем записывать в виде: , где - результирующий показатель; – j-й независимый параметр (фактор, воздействующий на результирующий показатель ()).

    Совокупность методов, определяющих тесноту связи между y и xj, составляет другой раздел математической статистики - корреляционный анализ. Если связь между переменными y и x является нефункциональной, установлена на основании совместного анализа соответствующих им выборок y 1, y2, …, yN и x1, x2, …, xN, то считается, что между ними существует корреляционная связь.

    Регрессия называется парной, если на y действует только один фактор (n = 1), и множественной, если число факторов, воздействующих на y, более одного (n > 1).

    Уравнение линии регрессии (линии связи) при парной регрессии записывается в виде: ỹ = f (x).

    Если при функциональной зависимости y=f(x) одному значению независимой переменной х соответствует только одно значение зависимой переменной y, то при корреляционной зависимости каждому значению х может соответствовать сколь угодно много значений y. Поэтому изменение х при корреляционной зависимости вызовет изменение не конкретного y, а среднего значения , и это изменение будет тем больше, чем теснее y и х будут корреляционно зависимы.

    Тесноту связи определяют с помощью коэффициента корреляции r, который находится в пределах .

    Если r = 0, то между случайными величинами y и х линейной связи нет (может иметь место параболическая, степенная, логарифмическая и т.п. связь, но не линейная ).

    Если , то между величинами y и х существует функциональная связь: y = f (x).

    При r > 0 имеет место прямая зависимость, т.е. с увеличением х увеличивается y, а при r < 0 – обратная зависимость - с увеличением х уменьшается y.

    Если , то между случайными величинами y и х существует только корреляционная связь: .

    Коэффициент корреляции находится по формуле:

    , (1)

    где

    , , ,

    Для вычисления r по значениям выборочных данных xi и yi, , формулу (1) преобразуем к виду (2):

    (2)

     

     







    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.